Elastic Properties of CaSiO3 Perovskite from ab initio Molecular Dynamics
نویسنده
چکیده
Ab initio molecular dynamics simulations were performed to investigate the elasticity of cubic CaSiO3 perovskite at high pressure and temperature. All three independent elastic constants for cubic CaSiO3 perovskite, C11, C12, and C44, were calculated from the computation of stress generated by small strains. The elastic constants were used to estimate the moduli and seismic wave velocities at the high pressure and high temperature characteristic of the Earth’s interior. The dependence of temperature for sound wave velocities decreased as the pressure increased. There was little difference between the estimated compressional sound wave velocity (VP) in cubic CaSiO3 perovskite and that in the Earth’s mantle, determined by seismological data. By contrast, a significant difference between the estimated shear sound wave velocity (VS) and that in the Earth’s mantle was confirmed. The elastic properties of cubic CaSiO3 perovskite cannot explain the properties of the Earth’s lower mantle, indicating that the cubic CaSiO3 perovskite phase is a minor mineral in the Earth’s lower mantle.
منابع مشابه
Ab initio molecular dynamics study of CaSiO3 perovskite at P-T conditions of Earth’s lower mantle
First-principles molecular dynamics calculations were performed in order to investigate the structure and properties of what is thought to be the third most abundant phase in the Earth’s lower mantle, CaSiO3 perovskite. The commonly assumed cubic structure was found to be stable at high temperatures T 1000–2000 K and unstable at low temperatures at all pressures. For this structure we investiga...
متن کاملElasticity of CaSiO3 perovskite at high pressure and high temperature
Ab initio molecular dynamic (AIMD) simulations were performed to calculate the equation of state (EOS) of CaSiO3 perovskite at mantle pressure–temperature conditions. At temperatures above 2000 K, even though the hydrostatic crystal structure is metrically tetragonal in the pressure range of 13–123 GPa, the symmetry of the elastic moduli is consistent with cubic symmetry. Our results show that ...
متن کاملPhase stability of CaSiO3 perovskite at high pressure and temperature: Insights from ab initio molecular dynamics
We report the dynamics of the structure of CaSiO3 perovskite from ab initio molecular dynamics (AIMD) calculations at high pressure (P up to 130 GPa) and high temperature (T up to 5000 K). Our calculations indicate three separate stability fields: orthorhombic, tetragonal and cubic, with the tetragonal phase dominating the pressure and temperature region between room temperature and 4000 K. The...
متن کاملHigh temperature elastic anisotropy of the perovskite and post- perovskite polymorphs of Al2O3
[1] Finite temperature ab initio molecular dynamics calculations were performed to determine the high temperature elastic and seismic properties of the perovskite and post-perovskite phases of pure endmember Al2O3. The post-perovskite phase exhibits very large degrees of shear-wave splitting. The incorporation of a few mole percent of Al2O3 into MgSiO3 is predicted to have little effect on the ...
متن کاملOganov Ab initio study of the high - pressure behavior of CaSiO 3 perovskite
Using density functional simulations, within the generalized gradient approximation and projectoraugmented wave method, we study structures and energetics of CaSiO3 perovskite in the pressure range of the Earth’s lower mantle (0–150 GPa). At zero Kelvin temperature the cubic ðPm 3mÞ CaSiO3 perovskite structure is unstable in the whole pressure range, at low pressures the orthorhombic (Pnam) str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 15 شماره
صفحات -
تاریخ انتشار 2013